Balanced Binary Tree
Problem:
Solution 1:
Brute force,
Solution 2:
Depth first search, use -1 to represent not balanced case.
--------------------------------------------------------------------------------------------------------------------------
思路:
一开始题意理解错了,我以为只看root,结果是看所有的点。没必要用result type,不用result type也很简单。
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as:
a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Example 1:
Given the following tree
[3,9,20,null,null,15,7]
:3 / \ 9 20 / \ 15 7
Return true.
Example 2:
Example 2:
Given the following tree
[1,2,2,3,3,null,null,4,4]
:1 / \ 2 2 / \ 3 3 / \ 4 4
Return false.
12/29/2017 updateSolution 1:
Brute force,
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean isBalanced(TreeNode root) {
if (root == null) return true;
return Math.abs(depth(root.left) - depth(root.right)) <= 1 && isBalanced(root.left) && isBalanced(root.right);
}
private int depth(TreeNode root) {
if (root == null) return 0;
return Math.max(depth(root.left), depth(root.right)) + 1;
}
}
Solution 2:
Depth first search, use -1 to represent not balanced case.
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean isBalanced(TreeNode root) {
return dfs(root) != -1;
}
private int dfs(TreeNode root) {
if (root == null) return 0;
int L = dfs(root.left);
if (L == -1) return -1;
int R = dfs(root.right);
if (R == -1) return -1;
return Math.abs(L - R) <= 1 ? Math.max(R, L) + 1 : -1;
}
}
--------------------------------------------------------------------------------------------------------------------------
思路:
一开始题意理解错了,我以为只看root,结果是看所有的点。没必要用result type,不用result type也很简单。
评论
发表评论