Balanced Binary Tree

Problem:
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as:
a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Example 1:
Given the following tree [3,9,20,null,null,15,7]:
    3
   / \
  9  20
    /  \
   15   7
Return true.

Example 2:
Given the following tree [1,2,2,3,3,null,null,4,4]:
       1
      / \
     2   2
    / \
   3   3
  / \
 4   4
Return false.
12/29/2017 update
Solution 1:
Brute force,
 /**  
  * Definition for a binary tree node.  
  * public class TreeNode {  
  *   int val;  
  *   TreeNode left;  
  *   TreeNode right;  
  *   TreeNode(int x) { val = x; }  
  * }  
  */  
 class Solution {  
   public boolean isBalanced(TreeNode root) {  
     if (root == null) return true;  
     return Math.abs(depth(root.left) - depth(root.right)) <= 1 &&  isBalanced(root.left)    && isBalanced(root.right);   
   }  
   private int depth(TreeNode root) {  
     if (root == null) return 0;  
     return Math.max(depth(root.left), depth(root.right)) + 1;  
   }  
 }  

Solution 2:
Depth first search, use -1 to represent not balanced case.
 /**  
  * Definition for a binary tree node.  
  * public class TreeNode {  
  *   int val;  
  *   TreeNode left;  
  *   TreeNode right;  
  *   TreeNode(int x) { val = x; }  
  * }  
  */  
 class Solution {  
   public boolean isBalanced(TreeNode root) {  
     return dfs(root) != -1;  
   }  
   private int dfs(TreeNode root) {  
     if (root == null) return 0;  
     int L = dfs(root.left);  
     if (L == -1) return -1;  
     int R = dfs(root.right);  
     if (R == -1) return -1;  
     return Math.abs(L - R) <= 1 ? Math.max(R, L) + 1 : -1;  
   }  
 }  



--------------------------------------------------------------------------------------------------------------------------
思路:
一开始题意理解错了,我以为只看root,结果是看所有的点。没必要用result type,不用result type也很简单。

评论

此博客中的热门博文

776. Split BST

663. Equal Tree Partition

532. K-diff Pairs in an Array