542. 01 Matrix
Problem:
Given a matrix consists of 0 and 1, find the distance of the nearest 0 for each cell.
The distance between two adjacent cells is 1.
Example 1:
Input:
Input:
0 0 0 0 1 0 0 0 0Output:
0 0 0 0 1 0 0 0 0
Example 2:
Input:
Input:
0 0 0 0 1 0 1 1 1Output:
0 0 0 0 1 0 1 2 1
Note:
- The number of elements of the given matrix will not exceed 10,000.
- There are at least one 0 in the given matrix.
- The cells are adjacent in only four directions: up, down, left and right.
Analysis:
BFS, instead of BFS from 1s, but BFS from 0s. So 1 BFS can do the job.
Solution:
class Solution { public int[][] updateMatrix(int[][] matrix) { if (matrix == null || matrix.length == 0 || matrix[0].length == 0) return matrix; int m = matrix.length; int n = matrix[0].length; Queue<int[]> queue = new LinkedList<>(); int[][] dis = new int[m][n]; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { if (matrix[i][j] == 0) queue.offer(new int[]{i, j}); else { dis[i][j] = Integer.MAX_VALUE; } } } int[][] dir = new int[][]{{0, 1},{0, -1},{1, 0},{-1, 0}}; while(!queue.isEmpty()) { int[] cur = queue.poll(); for (int[] d: dir) { int x = cur[0] + d[0]; int y = cur[1] + d[1]; if (0 <= x && x < m && 0 <=y && y < n && dis[x][y] == Integer.MAX_VALUE) { dis[x][y] = dis[cur[0]][cur[1]] + 1; queue.offer(new int[]{x, y}); } } } return dis; } }
评论
发表评论