62. Unique Paths

Problem:
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.

Analysis:
Minimum path sum马甲题,比Mini简单多了。
Solution:
O(n^2) space
class Solution {
    public int uniquePaths(int m, int n) {
        int[][] dp = new int[m][n];
        dp[0][0] = 1;
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (i == 0 && j != 0 ) dp[i][j] = 1;
                if (i != 0 && j == 0) dp[i][j] = 1;
                if (i != 0 && j != 0) dp[i][j] += dp[i - 1][j] + dp[i][j - 1];
            }
        }
        return dp[m - 1][n - 1];
    }
}

O(n) space

class Solution {
    public int uniquePaths(int m, int n) {
        int[] dp = new int[n];
        dp[0] = 1;
        for (int i = 0; i < m; i++) {
            for (int j = 1; j < n; j++) {
                dp[j] += dp[j - 1];
            }
        }
        return dp[n - 1];
    }
}

评论

此博客中的热门博文

663. Equal Tree Partition

776. Split BST

426. Convert Binary Search Tree to Sored Doubly Linked List