62. Unique Paths
Problem:
O(n) space
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?

Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
Analysis:
Minimum path sum马甲题,比Mini简单多了。
Solution:
O(n^2) space
class Solution { public int uniquePaths(int m, int n) { int[][] dp = new int[m][n]; dp[0][0] = 1; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { if (i == 0 && j != 0 ) dp[i][j] = 1; if (i != 0 && j == 0) dp[i][j] = 1; if (i != 0 && j != 0) dp[i][j] += dp[i - 1][j] + dp[i][j - 1]; } } return dp[m - 1][n - 1]; } }
O(n) space
class Solution { public int uniquePaths(int m, int n) { int[] dp = new int[n]; dp[0] = 1; for (int i = 0; i < m; i++) { for (int j = 1; j < n; j++) { dp[j] += dp[j - 1]; } } return dp[n - 1]; } }
评论
发表评论