397. Integer Replacement

Problem:
Given a positive integer n and you can do operations as follow:
  1. If n is even, replace n with n/2.
  2. If n is odd, you can replace n with either n + 1 or n - 1.
What is the minimum number of replacements needed for n to become 1?
Example 1:
Input:
8

Output:
3

Explanation:
8 -> 4 -> 2 -> 1
Example 2:
Input:
7

Output:
4

Explanation:
7 -> 8 -> 4 -> 2 -> 1
or
7 -> 6 -> 3 -> 2 -> 1
Analysis:
User recursion.  Not fit for dp, because if n is odd, n can add 1.

Solution:
n + 1 might overflow, use long in recursion instead of int.
class Solution {
    public int integerReplacement(int n) {
        return (int)longReplacement(n);
    }

    private int longReplacement(long n) {
        if (n == 1) return 0;
        if (n % 2 == 0) return longReplacement(n/2) + 1;
        else return Math.min(longReplacement(n + 1), longReplacement(n - 1)) + 1;
    }
}

评论

此博客中的热门博文

663. Equal Tree Partition

776. Split BST

426. Convert Binary Search Tree to Sored Doubly Linked List